Sensitive Detection of Elemental Mercury Vapor by Gold Nanoparticle Decorated Carbon Nanotube Sensors.

نویسندگان

  • Thomas P McNicholas
  • Kang Zhao
  • Changheng Yang
  • Sandra C Hernandez
  • Ashok Mulchandani
  • Nosang V Myung
  • Marc A Deshusses
چکیده

Low-cost, low power consumption gas sensors that can detect or quantify various gas analytes are of increasing interest for various applications ranging from mobile health, to environmental exposure assessment and homeland security. In particular miniature gas sensors based on nanomaterials that can be manufactured in the form of sensor arrays present great potential for the development of portable monitoring devices. In this study, we demonstrate that a chemiresistive nanosensor comprised of single walled carbon nanotubes decorated with gold nanoparticles has impressive sensitivity to elemental mercury (Hg) gas concentrations, with a lower detection limit as low as 2 ppb(v). Furthermore, this nanosensor was found to regenerate, though slowly, without any additional recovery steps. Finally, the mercury vapor sensing mechanism allowed for direct investigations into the origin of Surface Enhanced Raman Scattering (SERS) in carbon nanotubes decorated with Au nanoparticles.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A highly sensitive disposable immunosensor through direct electro-reduction of oxygen catalyzed by palladium nanoparticle decorated carbon nanotube label.

A palladium nanoparticle decorated carbon nanotube was designed as a label for preparation of a highly sensitive disposable immunosensor. The immunosensor was constructed by assembling the capture antibody on gold nanoparticles decorated graphene nanosheets modified screen printed carbon working electrode. With a sandwich immunoassay mode, the palladium nanoparticle decorated carbon nanotubes w...

متن کامل

Sensitive detection of H2S using gold nanoparticle decorated single-walled carbon nanotubes.

Herein, we demonstrate that highly sensitive conductometric gas nanosensors for H(2)S can be synthesized by electrodepositing gold nanoparticles on single-walled carbon nanotube (SWNT) networks. Adjusting the electrodeposition conditions allowed for tuning of the size and number of gold nanoparticles deposited. The best H(2)S sensing performance was obtained with discrete gold nanodeposits rath...

متن کامل

Gas sensing with gold-decorated vertically aligned carbon nanotubes

Vertically aligned carbon nanotubes of different lengths (150, 300, 500 µm) synthesized by thermal chemical vapor deposition and decorated with gold nanoparticles were investigated as gas sensitive materials for detecting nitrogen dioxide (NO2) at room temperature. Gold nanoparticles of about 6 nm in diameter were sputtered on the top surface of the carbon nanotube forests to enhance the sensit...

متن کامل

Sensitive detection of Nitrogen Dioxide using gold nanoparticles decorated Single Walled Carbon Nanotubes

The modification of carbon nanotubes (CNTs) could enhance their surface and electric properties. To this purpose, we explore the impact of a thin layer of gold (Au) on the surface of single wall carbon nanotubes (SWCNTs). SWCNTs have been grown by Chemical Vapor Deposition (CVD) method and decorated with gold nanoparticles were investigated as gas sensitive materials for detecting nitrogen diox...

متن کامل

Controllable synthesis of silver nanoparticle-decorated reduced graphene oxide hybrids for ammonia detection.

We demonstrate controllable fabrication of Ag nanoparticle (NP)-decorated reduced graphene oxide (RGO/Ag) hybrids and their application for fast and selective detection of ammonia at room temperature. Ag NPs greatly improved the sensitivity of RGO. The response time (6 s) and recovery time (10 s) are comparable with our previous Ag NP-decorated multiwalled carbon nanotube (MWCNT/Ag) NH3 sensors...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The journal of physical chemistry. C, Nanomaterials and interfaces

دوره 115 28  شماره 

صفحات  -

تاریخ انتشار 2011